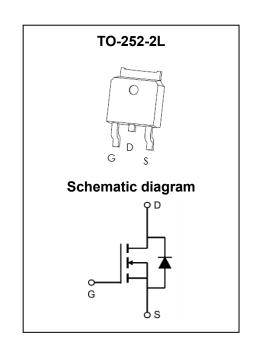


GPM042N03LTF

30V N-Channel MOSFET

Product Summary


V _{(BR)DSS}	R _{DS(on)TYP}	lο
30V	4.3mΩ@10V	100A
	6.7mΩ@4.5V	100A

Feature

- Trench Technology Power MOSFET
- Low R_{DS(ON)}
- Low Gate Charge
- Low Gate Resistance
- 100% UIS Tested

Application

- Power Switching Application
- Motor Driving
- Power Management

Package Marking and Ordering Information

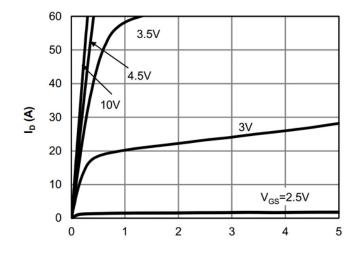
Part Number	Package	Marking	Packing	Reel Size	Tape Width	Qty
GPM042N03LTF	TO-252-2L	M042N03L	Reel & Tape	330mm	16mm	2500pcs

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

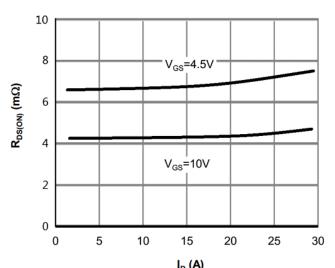
Parameter		Symbol	Value	Unit	
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage	V _G s	±20	V		
Continuous Dusin Compant	T _C = 25°C		100		
Continuous Drain Current ¹	T _C = 100°C	- I _D	63	А	
Pulsed Drain Current ²	I _{DM}	215	Α		
Single Pulsed Avalanche Current ³	las	30	Α		
Single Pulsed Avalanche Energy ³		E _{AS}	225	mJ	
Power Dissipation ⁵	T _C = 25°C	P _D	85	W	
Thermal Resistance from Junction to Ambient ⁶	R _{θJA}	50	°C/W		
Thermal Resistance from Junction to Case	R _{θJC}	1.47	°C/W		
Junction Temperature	TJ	150	°C		
Storage Temperature		T _{STG}	-55~ +150	°C	

MOSFET ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

GPM042N03LTF


Parameter	Symbol	Test Condition	Min	Туре	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250μA	30			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 30V, V _{GS} = 0V			1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} = ±20V, V _{DS} = 0V			±100	nA
On Characteristics ⁴	•					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.2	1.5	1.9	V
Danier Courses On Brasistana	Б	Vgs = 10V, ID = 20A		4.3	6	mΩ
Drain-Source On-Resistance	R _{DS(on)}	Vgs = 4.5V, ID = 10A		6.7	9	mΩ
Dynamic Characteristics	•		•	•	•	
Input Capacitance	C _{iss}			2020		pF
Output Capacitance	Coss	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz		165		
Reverse Transfer Capacitance	Crss			160		
Gate Resistance	R_g	V _{DS} = 0V, V _{GS} = 0V, f = 1MHz		3.0		Ω
Switching Characteristics	•		•	•	•	
Total Gate Charge	Q_g			10		
Gate-Source Charge	Qgs	$V_{DS} = 150V$, $V_{GS} = 10V$, $I_{D} = 20A$		2.1		nC
Gate-Drain Charge	Q_{gd}			4.4		
Turn-On Delay Time	t _{d(on)}			10		
Turn-On Rise Time	tr	$V_{DD} = 15V, V_{GS} = 10V,$ $RL = 0.75\Omega, R_{GEN} = 3\Omega$		14		ns
Turn-Off Delay Time	$t_{d(off)}$			35		
Turn-Off Fall Time	t _f			8		
Source-Drain Diode Characteristics						
Diode Forward Voltage ⁴	V_{SD}	V _{GS} = 0V, I _S = 20A			1.2	V

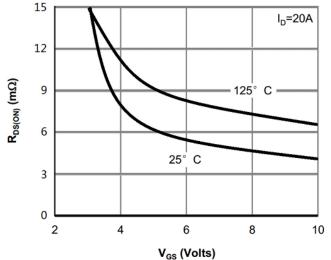
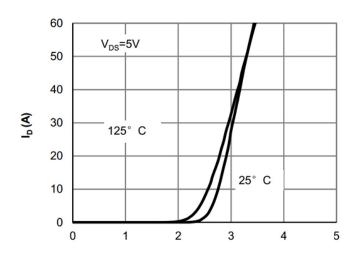
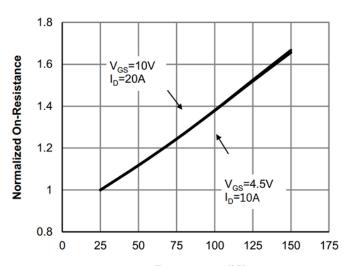
Notes:

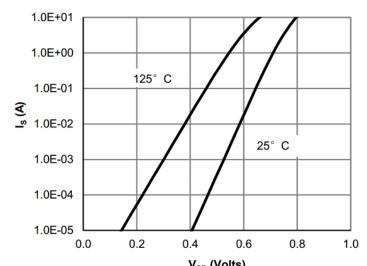

- 1. The maximum current rating is limited by package. And device mounted on a large heatsink.
- 2.Pulse Test: Pulse Width ≤ 10µs, duty cycle ≤ 1%.
- $3.E_{AS}$ condition: V_{DD} = 15V, V_{GS} = 10V, L = 0.5mH, R_{G} = 25 Ω Starting T_{J} = 25 $^{\circ}C.$
- 4. Pulse Test: Pulse Width ≤ $300\mu s$, duty cycle ≤ 2%.
- 5. The power dissipation P_D is limited by $T_{J(MAX)}$ = 150°C. And device mounted on a large heatsink.
- 6.Device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C.

Typical Characteristics

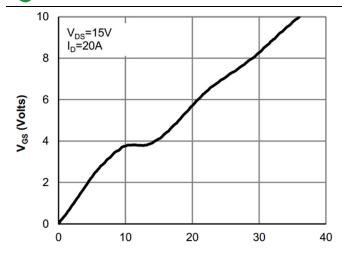
V_{DS} (Volts) Figure 1: On-Region Characteristics

 $\rm I_{\rm D}\left(A\right)$ Figure 3: On-Resistance vs. Drain Current and Gate

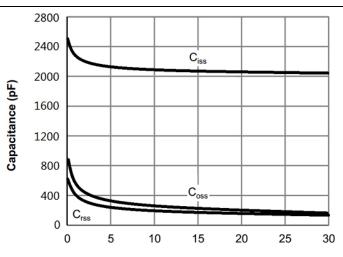





Figure 5: On-Resistance vs. Gate-Source Voltage

 V_{GS} (Volts) Figure 2: Transfer Characteristics



Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature



V_{SD} (Volts) Figure 6: Body-Diode Characteristics

 $\mathbf{Q_g}$ (nC) Figure 7: Gate-Charge Characteristics

V_{DS} (Volts)
Figure 8: Capacitance Characteristics

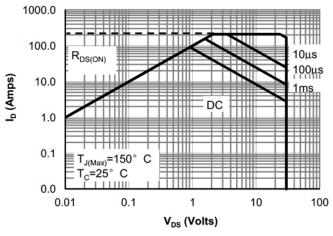


Figure 9: Maximum Forward Biased Safe Operating Area

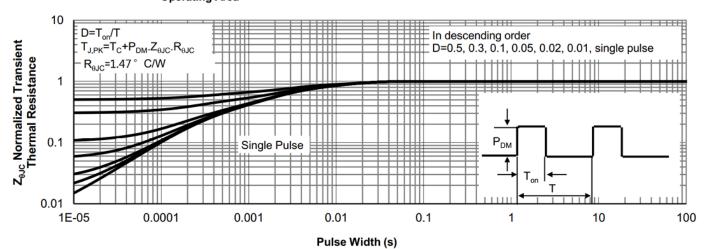
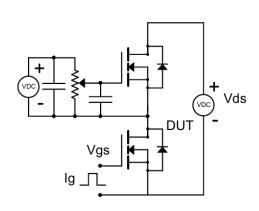
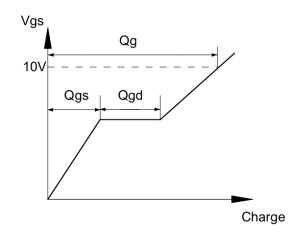
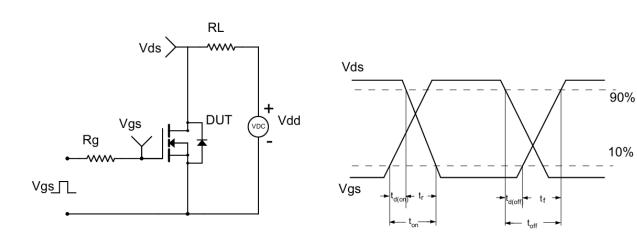
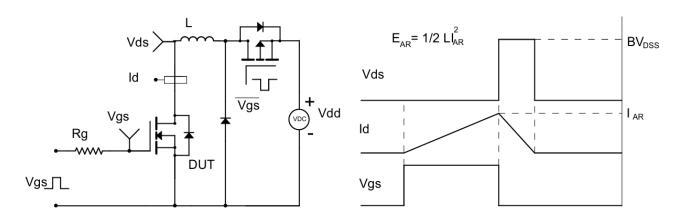




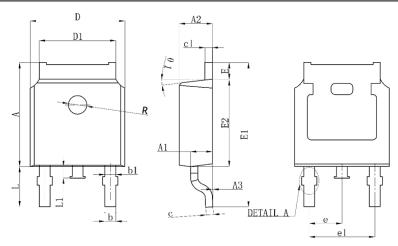
Figure 10: Normalized Maximum Transient Thermal Impedance

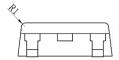


Gate Charge Test Circuit & Waveform



Resistive Switching Test Circuit & Waveform




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

TO-252-2L Package Information

Samah al	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	6.850	7.250	0.269	0.285	
A1	0.960	1.060	0.038	0.042	
A2	2.200	2.400	0.087	0.094	
A3	0.000	0.15	0.000	0.006	
b	0.760	REF	0.030REF		
b1	1.000	REF	0.039REF		
С	0.508	BREF	0.020REF		
c1	0.508	0.508REF		REF	
D	6.250	6.850	0.246	0.270	
D1	5.050	5.650	0.199	0.222	
Е	0.850	1.200	0.033	0.047	
E1	9.700	10.400	0.382	0.409	
E2	5.800	6.400	0.228	0.252	
е	2.286	BSC	0.090BSC		
e1	4.572	2REF	0.180REF		
L	2.650	2.950	0.104	0.116	
L1	0.600	1.000	0.024	0.039	
θ1	7°F	REF	7°REF		
R	1.300	REF	0.051REF		
R1	0.250	REF	0.010REF		

Attention:

- GreenPower Electronics reserves the right to improve product design function and reliability without notice.
- Any and all semiconductor products have certain probability to fail or malfunction, which may result in personal injury, death or
 property damage. Customer are solely responsible for providing adequate safe measures when design their systems.
- GreenPower Electronics products belong to consumer electronics or other civilian electronic products.